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We present a detailed theoretical study of the electronic spectrum and Zeeman splitting in hole quantum
wires. The spin-3

2 character of the topmost bulk-valence-band states results in a strong variation in subband-
edge g factors between different subbands. We elucidate the interplay between quantum confinement and
heavy-hole–light-hole mixing and identify a certain robustness displayed by low-lying hole-wire subband
edges with respect to changes in the shape or strength of the wire potential. The ability to address individual
subband edges in, e.g., transport or optical experiments enables the study of hole states with nonstandard spin
polarization, which do not exist in spin-1

2 systems. Changing the aspect ratio of hole wires with rectangular
cross section turns out to strongly affect the g factor of subband edges, providing an opportunity for versatile
in situ tuning of hole-spin properties with possible application in spintronics. The relative importance of cubic
crystal symmetry is discussed, as well as the spin splitting away from zone-center subband edges.
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I. INTRODUCTION

Self-assembled semiconductor nanowires have attracted a
lot of attention recently due to their well-defined crystalline
structure, unique electrical and optical properties, as well as
a promising outlook for their use as building blocks in nano-
electronics, nanospintronics, and nanobiotechnology.1–32

Rapid developments in material science and technology have
enabled the realization of nanowires from many materials
and material combinations, such as III-V semiconductors
�e.g., GaAs,1,22,27 InP,2,3,10,12 and InAs �Refs. 1, 7, 8, and 29��
and II-VI semiconductors �e.g., CdSe,5,12 CdS,12 CdTe,4,25

and ZnTe �Refs. 20 and 32��, as well as Si �Refs. 14, 24, and
28� and Ge.23,30,31 By now it is possible to dope
nanowires22,26,29 and perform heterostructure engineering
with atomic precision.7,8,12,17 This enabled the realization of
p-type22,26 or ambipolar29 transport characteristics, as well as
the fabrication of nanostructures �quantum dots,8 rods,20 and
superlattices9�. Based on these material science develop-
ments, devices such as nanowire diodes,1,3 superlattices for
nanoscale photonics and electronics,9 lasers,6,16 resonant tun-
neling diodes,8 and light-emitting diodes1,3,12 have been dem-
onstrated.

Another area of significant research that has emerged in
recent years focuses on the study of the spin degree of free-
dom. This is relevant not only for the fundamental under-
standing of spin phenomena in solid-state systems but also
for potential applications that utilize the spin, rather than the
charge degree of freedom, in electronics.33,34 Spin injection,
manipulation, and detection have been achieved with the use
of magnetic fields and diluted-magnetic semiconductors.35,36

A complementary direction of current spin-electronic re-
search is based on the quantum-mechanical coupling be-
tween spin and orbital degrees of freedom. For example, the

tunability of structural inversion-asymmetry induced spin-
orbit �SO� coupling37 could be used to manipulate spin-
polarized currents in ballistic mesoscopic channels.38

To study SO effects in semiconductors, charge carriers
from the valence band �i.e., holes� are particularly interesting
since they are subjects to an inherently strong SO coupling
even in the bulk. In addition, as valence-band states are
predominantly p-like �i.e., have orbital angular momentum
L=1�, they are characterized by a total angular momentum of
either J=3 /2 or J=1 /2. The topmost valence bands are de-
scribed by the former; thus they behave like spin-3

2 particles
and, when confined in nanostructures, exhibit quite counter-
intuitive quantum effects. For example, the spin-3

2 nature of
the topmost valence bands leads to large anisotropies of the
hole g factor in quantum wells,39,40 wires,27 point
contacts,41,42 quantum dots,43–45 and localized acceptor
states.46

The bulk dispersions for the conduction and valence
bands of a typical semiconductor in zero magnetic field are
shown as the solid curves in Fig. 1. The fourfold degeneracy
of the J=3 /2 valence-band edges is lifted at finite wave vec-
tor k,47 giving rise to separated heavy-hole �HH� and light-
hole �LH� branches whose states are distinguished by the
z-axis spin-3

2 projection quantum numbers Jz= �3 /2 and Jz
= �1 /2, respectively. Size quantization, e.g., due to a
quantum-well confinement, causes an energy splitting be-
tween the quasi-two-dimensional �quasi-2D� HH and LH
band edges.39,48,49 This HH-LH splitting is illustrated by the
dashed lines in Fig. 1. At finite wave vector k� for motion
perpendicular to the quantum-well growth direction, a
HH-LH mixing occurs which can give rise to level
anticrossings,39 further increasing the complexity of holes’
electronic properties.
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While in 2D systems grown in high-symmetry directions
the HH-LH mixing is absent at the subband edge50 and can
be assumed to have a small magnitude for finite k� in the
presence of strong quantum confinement,51 this is never the
case for hole nanowires27,52–56 and quantum dots.57–60 Previ-
ous studies of the topmost hole-nanowire eigenstates have
shown that they are, to a varying degree, mixtures of HH and
LH states.56,61 This has been found to influence, e.g., the spin
splitting in cylindrical hole nanowires with hard-wall
confinement56,61,62 and nanosized clusters.63

In this paper, we present an extensive theoretical study of
the electronic structure of hole nanowires, focusing espe-
cially on the importance of HH-LH mixing and splitting.
Furthermore, we have investigated the ramifications of the
spin-3

2 nature of holes for the spin splitting of hole-nanowire
states, in particular elucidating the interplay between the
bulk-material and bound-state orbital effects due to a mag-
netic field.

We use the Luttinger description47 of the semiconductor
valence band to study the subband edges �kz=0� of hole
nanowires oriented along the z direction. In order to quanti-
tatively analyze the strength of HH-LH mixing for the
subband-edge states, we make use of scalar invariants ob-
tainable from a decomposition of the spin-3

2 density matrix in
terms of a multipole expansion.64 The squared dipole mo-
ment, which apart from a prefactor is a measure of the
squared magnitude of the hole spin polarization, is by its
definition64 independent of the quantization axis of the angu-
lar momentum used in the basis functions of the hole
subband-edge state. Thus, it provides a rigorous basis-
independent way of characterizing the hole spin-polarization
character of hole subband-edge states.

We present a comprehensive analysis of the hole spin-
polarization character of hole subband-edge states in nano-
wires with different confining potentials. The strong HH-LH
mixing manifests as large spatial variations in the hole spin-

polarization density profile of individual subband states. Fur-
thermore, we observe large differences between the hole
spin-polarization density profiles of different subband states.
We also find that the topmost hole subband edges in general
display universal features that are robust against changes in
the confining potential’s symmetry. For hole subband-edge
states that are far away from the bulk-valence-band edge,
however, differences in the strength and shape of the confin-
ing potential significantly affect the wave function’s hole
spin polarization.

A direct manifestation of the strong HH-LH mixing �and
splitting� in hole nanowires is observed in the spin splitting
due to a finite magnetic field. We use perturbative and nu-
merical calculations to show that, in a magnetic field applied
parallel to the wire axis, the effective g factor varies strongly
between different wire subband edges. We analyze the sepa-
rate contributions to the g factor arising from bulk-material
and orbital bound-state interactions with the magnetic field.
We find that the hole envelope functions acquire large orbital
momentum due to the imposed quantum confinement, which
strongly affects the effective g factor of hole-nanowire states.
Interestingly, the bulk-material and bound-state contributions
can come with the same or opposite signs, thus effectively
enhancing or suppressing each other’s contribution to the
total spin splitting. We also find that the interplay between
the two contributions is very sensitive to the hole wave func-
tion and thus that the g factor of individual wire states can be
tuned by changing the confining potential. For example, we
show that by changing the aspect ratio of the lateral dimen-
sions of a wire with rectangular cross section, one can tune
the magnitude and even the sign of the g factor quite sensi-
tively. Such a situation can, in principle, be easily realized by
tuning the lateral confinement via side gates in
self-assembled65,66 or lithographically defined nanowires67 or
quantum point contacts.68–70 Quasi-one-dimensional �quasi-
1D� hole systems thus provide an interesting laboratory for
the study of spin-3

2 physics, as well as have the potential for
being building blocks in hole-spintronic applications.

In the following, we start by presenting the basic theoret-
ical formalism for describing hole-nanowire states in the ab-
sence of a magnetic field within the Luttinger model �Sec.
II�. Subsequently, we will discuss the influence of valence-
band mixing on hole-nanowire subband edges �kz=0� in Sec.
III using scalar invariants from the decomposition of the
spin-3

2 density matrix to provide a comprehensive analysis of
the hole spin polarization of nanowire subband edges. A dis-
cussion of the influence of symmetry and strength of the
confining potential will be given. Next, the spin splitting of
hole-nanowire subband edges due to an applied magnetic
field is discussed in Sec. IV. We provide the theoretical de-
scription of bulk-material and bound-state orbital interac-
tions with a magnetic field in Sec. IV A, followed by a de-
tailed analysis of their individual contribution to the total g
factor of hole-nanowire states in Secs. IV B and IV C. The
effects of lower-symmetry corrections and finite kz will be
considered in Secs. IV D and IV F. We discuss the important
interplay between bulk-material and orbital contributions to
the total g factors of hole-nanowire states in Sec. IV E, dem-
onstrating a versatile tunability of the magnitude and sign of
the g factor by simple confinement engineering. We provide
a summary and conclusions in Sec. V.

E

k
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J = 3/2z

J = 1/2z

J = 1/2z

J=3/2

J=1/2
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FIG. 1. �Color online� Schematic dispersion of bulk-
semiconductor conduction and valence bands �solid lines�. The
dashed lines depict a situation where the J=3 /2 valence bands are
split due to quantum confinement, e.g., in a two-dimensional hole
gas.
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II. THEORETICAL DESCRIPTION OF HOLE-NANOWIRE
SUBBANDS IN THE ABSENCE OF A MAGNETIC

FIELD

A. Luttinger model for bulk-semiconductor valence bands

The electronic structure of bulk valence bands can be de-
scribed using the Luttinger Hamiltonian47

HL = −
�2

2m0
���1 + 5�2/2�k̂2 − 2�2�k̂x

2Ĵx
2 + c.p.� − 4�3��k̂x, k̂y�

��Ĵx, Ĵy� + c.p.�� , �1�

where m0 is the vacuum electron mass, �k̂i are the compo-

nents of linear orbital momentum, Ĵi are the Cartesian
angular-momentum operators for a particle with spin 3

2 , and
�i are the Luttinger parameters. In Eq. �1�, we have used the
notation �A ,B�= 1

2 �AB+BA�. We will choose our quantiza-
tion axis for total �spin-3

2 � angular momentum to be along the

z direction. In this representation, Ĵz will be diagonal with
eigenvalues �

3
2 and �

1
2 . The majority of the results pre-

sented in this paper focus on the properties of subband-edge
properties at kz=0 and, hence, we restrict our discussion of
the theoretical formalism to this case in the following unless
otherwise indicated. At the end of the paper, we will discuss
hole-nanowire dispersions as a function of kz, as well as ad-
dress the issue53,54 of subband edges occurring at finite kz.

To provide clearer interpretations of our results, we will
initially use the Luttinger Hamiltonian in the spherical
approximation71 where band-warping terms due to cubic-
symmetry corrections72 are neglected. Formally, the spheri-
cal approximation consists of setting �2→�s and �3→�s
with �s= �2�2+3�3� /5. At the end of the paper, we will ex-
plicitly discuss the effects of cubic corrections. In the spheri-
cal approximation �and for kz=0�, bulk Hamiltonian �1� sim-
plifies to

HL
s = −

�2

2m0
��1k̂�

2 · 14�4 + �sk̂�
2 �Ĵz

2 −
5

4
· 14�4	

− �s�k̂−
2Ĵ+

2 + k̂+
2Ĵ−

2�
 , �2�

where k̂�= k̂x� ik̂y, k̂�
2 = k̂x

2+ k̂y
2, and Ĵ�= �Ĵx� iĴy� /�2. The

parameter �s is a measure of the strength of the SO coupling
that is responsible for lifting the fourfold degeneracy for k
�0. This arises through the second term in Eq. �2�, which
describes the energy splitting between HH and LH bands.
The third term is responsible for HH-LH mixing through the

operators Ĵ�, which couple HH and LH amplitudes of the
hole wave function. Thus, for k��0 and finite �s, the bulk
valence bands can no longer be identified as being of purely
HH or LH character in the sense of having definite spin
projections Jz= �

3
2 or Jz= �

1
2 .56 In the following discus-

sions, we will restrict the use of the HH and LH labels solely
for states that are pure HH or LH states in this sense. In the
presence of a two-dimensional confining potential, such as in
a quantum wire along the z direction, even states at the band

edges have a finite k� due to quantum confinement and thus
are HH-LH mixtures.52,56

B. Description of hole states in nanowires

We will now provide a theoretical description for sub-
bands in hole nanowires confined by potentials with different
strengths and confining potentials. We will start off by study-
ing cylindrical hole nanowires confined by an infinite hard-
wall potential of radius R, which is particularly interesting
due to its symmetry. We note that such wires can be readily
fabricated by self-assembly.18

In the spherical approximation, the sum of the angular

momenta Ĵ of the band-edge Bloch functions and L̂ of the
envelope functions is a constant of the motion.71,72 This con-

served operator F̂= Ĵ+ L̂, which is similar to a total angular
momentum, was first used by Baldereschi and Lipari71,72 to
simplify the acceptor-state problem utilizing an analogy be-

tween L̂ and Ĵ and the L-S coupling scheme in atomic phys-
ics. Sercel and Vahala73,74 extended this approach to study
spherical quantum dots and cylindrical wires. Their formal-
ism will be the starting point for our own investigations of
the properties of hole nanowires.

We take the quantum-wire axis to be parallel to the spin-3
2

quantization axis �i.e., the z direction�. The wire Hamiltonian
HL

s +Vch�r� �including the cylindrical hard-wall potential:
Vch�r�=0 for r�R and Vch�r�=−� elsewhere� has common

eigenstates with F̂z= Ĵz+ L̂z. Furthermore, it is a property of
the Luttinger Hamiltonian that, at kz=0, each block labeled
by a fixed quantum number Fz further decouples into two
2�2 blocks according to

�HL
s �Fz

= �HFz

+ 0

0 HFz

− 
 , �3�

where the HFz

� are 2�2 matrices acting in the Hilbert sub-

spaces spanned by states with spin projections Jz= � 3
2 ,− 1

2 �
�for �=+� and Jz= � 1

2 ,− 3
2 � �for �=−�, respectively.74

To determine bulk-hole states at zero magnetic field �Bz
=0� that can be used to construct cylindrical-wire subband
states, we use polar coordinates �r ,�� and the wave function
ansatz,56,74

	�r,�� = eiFz��
aFz

�ch�JFz−3/2�k�r�e−3i�/2

bFz

�ch�JFz+1/2�k�r�ei�/2

cFz

�ch�JFz−1/2�k�r�e−i�/2

dFz

�ch�JFz+3/2�k�r�e3i�/2
 , �4�

where Jn�k�r� is an integer Bessel function and aFz

�ch� . . .dFz

�ch�

are constants. Diagonalization of �HL
s �Fz

in this representation
yields the following bulk-hole eigenstates:
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	+Fz

�r,�� = eiFz��

a

�ch�JFz−3/2�k�


 r�e−3i�/2

b

�ch�JFz+1/2�k�


 r�ei�/2

0

0
 �5�

and

	−Fz

�r,�� = eiFz��

0

0

b

�ch�JFz−1/2�k�


 r�e−i�/2

a

�ch�JFz+3/2�k�


 r�e3i�/2
 . �6�

In Eqs. �5� and �6� the subscript index 
=� labels eigen-
states within the 2�2 subspaces spanned by HH and LH
states with spin projections Jz= �

3
2 and Jz= �

1
2 , respec-

tively. We emphasize that, for k��0, hole bands are no
longer of a purely HH or LH type, hence we use the generic
label 
=�.

The coefficients a

�ch� and b


�ch�, which do not depend on Fz
�nor on � at Bz=0�, are given by74

a

�ch� = −

1
�3

, b

�ch� = �3. �7�

The corresponding eigenenergies are

E
�k�� = −
�2k�

2

2m0
��1 − 2
�s� . �8�

A generalization of these results for finite z component of
the magnetic field was presented in Ref. 56. There it was
pointed out that an interesting crossover occurs with increas-
ing k� for the effective g factor of bulk-hole valence bands
in the presence of a finite Bz �see Fig. 2 of Ref. 56�. For
k�=0, the spin splitting of the bulk-hole bands is character-
ized �in absolute terms� by the g factors g=6� and g=2�,
which follows from the form of the bulk-hole Zeeman
Hamiltonian that will be introduced in Eq. �15�. However, at
large k�, spin splitting turns out to be characterized by g
=0 and g=4�. This situation is reminiscent of the Zeeman
effect in two-dimensional hole systems subject to an in-plane
magnetic field,39 a result that will also be significant for our
later discussion of the spin splitting of a particular class of
cylindrical hole-nanowire subband edges.

Quantum wire eigenstates with subband index  are
formed by superimposing bulk-hole eigenstates according to

��Fz

�,ch��r,�� = c�Fz+
 	�Fz+

+ c�Fz−
 	�Fz−

. �9�

The subband eigenenergies E�Fz

�,ch� and expansion coefficients
c�Fz


 are obtained by imposing the hard-wall boundary con-
dition ��Fz

�,ch��R ,��=0 and solving the secular equations

a+
�ch�b−

�ch�JFz−3/2�k�
+ R�JFz+1/2�k�

− R�

− a−
�ch�b+

�ch�JFz−3/2�k�
− R�JFz+1/2�k�

+ R� = 0, �10�

b+
�ch�a−

�ch�JFz−1/2�k�
+ R�JFz+3/2�k�

− R�

− b−
�ch�a+

�ch�JFz−1/2�k�
− R�JFz+3/2�k�

+ R� = 0. �11�

Again, a generalization for the case of finite magnetic field
was presented earlier in Ref. 56. Hole-nanowire subband
edges can thus be obtained in a semianalytical fashion for a
cylindrical hard-wall confining potential.

We have also investigated hole nanowires defined by con-
fining potentials with other symmetry and strength in order
to gauge the universality of our findings. In particular, we
have focused on two additional cases, hard-wall confined
hole wires with square �and rectangular� cross section and
cylindrical hole nanowires confined by a harmonic potential.

The first case corresponds to a confining potential that is
given by

Vrh�x,y� = 0 for 0 � x � Wx and 0 � y � Wy ,

Vrh�x,y� = − � elsewhere,

where Wx,y are the lateral wire dimensions and Wx=AWy. We
will first consider a square-cross-section case with A=1, de-
ferring a discussion of the dependence on aspect ratio A to
the end of our paper. Using a complete two-dimensional
square-well basis set, the wave function of each individual
wire subband edge with index  is expanded according to

��,rh��x,y� = �
m,n�

amn
�,rh�

bmn
�,rh�

cmn
�,rh�

dmn
�,rh�

 2 sin
m�x

Wx
sin

n�y

Wy

�WxWy

, �12�

from which the hole-wire eigenenergies E�,rh� and expansion
coefficients in Eq. �12� are obtained by numerical diagonal-
ization of HL

s +Vrh�x ,y� within this basis.
Similar calculations are performed for cylindrical wires

confined by a harmonic potential,

Vcs�x,y� = −
�2

m0

��1 + 5�2/2��2

2
�x2 + y2� , �13�

where � is a measure for the softness of the harmonic po-
tential. The eigenstates of these wires are expanded in a com-
plete basis set using Hermite polynomials according to

��,cs��x,y� = �
m,n�

amn
�,cs�

bmn
�,cs�

cmn
�,cs�

dmn
�,cs�


�� �

�m ! n ! 2m+nHm���x�Hn���y�e−��x2+y2�/2.

�14�

Numerical diagonalization of HL
s +Vcs�x ,y� within this basis

yields the corresponding eigenenergies E�,cs� and expansion
coefficients in Eq. �14�.
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III. VALENCE-BAND MIXING IN HOLE NANOWIRES

A. Cylindrical hole wires with hard-wall confinement

We will start by analyzing the hole subband-edge states in
cylindrical hard-wall wires, which are of the form given in
Eq. �9�. To begin with, we turn our attention to the detailed
form of the secular equations �Eqs. �10� and �11��. A special
case arises for subbands with Fz= 1

2�. For these values of Fz,
the spinor entries in the hole-wire wave functions �Eq. �9��
are proportional to J�1�k�


 r�. Since J−1�x�=−J1�x�, the secu-
lar equations reduce to J1�k�


 r�=0, a condition that can be
satisfied by the individual bulk-hole eigenstates with 
=�
that are part of the superposition in Eq. �9�. Thus, for Fz

= 1
2�, the wire eigenstates are actually pure bulk states with


=+ or 
=−. Note, however, that these bulk states are still of
mixed HH and LH character for finite �quantized� k�,56

hence our labeling in terms of generic quantum number 

and not in terms of HH and LH as some authors do, reserv-
ing the latter labeling strictly for states that have definite
angular-momentum projections Jz= �

3
2 and Jz= �

1
2 , respec-

tively. For any other values Fz=− 1
2� and �Fz��

1
2 the indices

of the Bessel functions appearing in Eqs. �10� and �11� are
not equal and the resulting wire states are true mixtures of
the bulk-hole eigenstates 	�Fz+

�r ,�� and 	�Fz,−
�r ,��, for a

given �, in order to satisfy the boundary condition set by the
wire confinement.

To clarify how strong the HH-LH mixing in fact is, we
will analyze the wave function of hole-nanowire subband
edges in greater detail. To be specific, we use the Luttinger
parameter characteristic for GaAs �Ref. 75� in our calcula-
tions: �1=6.98, �2=2.06, �3=2.93, and hence �s=2.58. �We
remind the reader that the following results are calculated
using the spherical approximation for the Luttinger Hamil-
tonian.� At Bz=0, the wire eigenstates are twofold degener-
ate, the degeneracy occurring between states corresponding
to subspaces �=� characterized by �Fz. We will assume
�=+ in the following and suppress the index � for brevity.

We illustrate the HH-LH mixing in two different ways.
The traditional approach is to show the squared amplitudes
of the HH and LH components in the subband eigenfunc-
tions. However, the thus obtained HH or LH density profile
depends on the chosen basis, i.e., the quantization axis of
total angular momentum. As an alternative, we will also con-
sider a quantity that measures the invariant hole spin-
polarization density, P=�1

2 /�0
2. Here the quantities �1

2 and �0
2

are scalar invariants derived from the spin-3
2 density matrix64

that are related to the hole spin-dipole density and total
charge density, respectively. A pure HH state has P=1.8 ev-
erywhere, whereas a pure LH character yields P=0.2 uni-
formly in space. The formulation in terms of scalar invariants
is basis-set independent. In principle, it therefore enables a
more rigorous analysis of HH-LH mixing than would be pos-
sible in the traditional approach.

In Fig. 2, results are shown for the topmost subband edge
�i.e., the subband with index =1�. The subband-edge state
is characterized by Fz=− 1

2 . Figures 2�a� and 2�b� give the
cross-sectional profiles of the HH and LH components in the
subband-edge wave function, illustrating that �i� the spatial
density profile of the two components is very different and

�ii� their respective overall magnitudes differ by 2 orders of
magnitude, with the LH component being the dominant one.
These findings are also reflected in the �normalized� hole
spin-polarization density, P, which is shown in Fig. 2�d�.
The normalization by �0

2 �which is a measure of the hole
charge density� ensures that the observed spatial variations
in the hole spin-polarization density can indeed be attributed
to hole spin and not charge-density variations. For compari-
son, the charge-density profile is shown in Fig. 2�c�.

Inspection of the hole spin-polarization density P shows
that the eigenstate is predominantly LH-like throughout most
of the core of the wire, where P=0.2. However, toward the
edge, i.e., with increasing r, the hole spin polarization van-
ishes only to recover to a finite value at the very edge of the
cylindrical confining potential. This is a manifestation of
HH-LH mixing. The predominantly LH character of the top-
most hole-wire subband in GaAs is in agreement with other
theoretical predictions.27,55,76

We now turn our attention to the second-highest subband,
with index =2. This wire subband edge is characterized by
Fz= 1

2 and therefore is actually a bulk-hole eigenstate �see
discussion above�. Figures 3�a�–3�c� show the squared am-
plitudes of the HH and LH components of the wave function,
along with the total hole charge-density profile. The hole
spin-polarization density turns out to vanish identically
across the entire cross section of the wire and is therefore not
shown. This means that the second-highest subband edge
completely lacks spin polarization. Here the difference be-
tween the traditional approach toward discussing HH-LH
mixing and the alternative one based on spin-density-matrix
invariants64 is most transparent. We will elaborate on this
fact more later on.

The third-highest subband edge turns out to be of pre-
dominantly HH character, as can be seen from Fig. 4. The
hole spin-polarization density profile �Fig. 4�d�� shows
clearly that the wave function around the core of the wire is
of purely HH character �P=1.8�. With increasing r, however,
the hole spin polarization drops to zero, subsequently recov-
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FIG. 2. �Color online� Analysis of the highest-in-energy
quantum-wire subband-edge state with =1 and Fz=− 1
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+�. Square amplitudes of �a� the HH component and �b� the LH
component of the subband-edge wave function. �c� Total wave
function amplitude squared. �d� Spatial variation in the hole spin-
polarization density, P=�1
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ering values around P=0.2, which signifies a LH character.
The HH-LH mixture variations can also be seen explicitly by
comparing the magnitudes and spatial profile of the square
amplitudes of the HH and LH components of the wave func-
tion, shown in Figs. 4�a� and 4�b�, respectively.

For subbands at decreasing energy �i.e., those with higher
subband index �, the hole spin-polarization density profiles

become increasingly complex. In Fig. 5 we show the hole
spin-polarization density P for the subband edges with 
=4–8 and =10. The subband edge with =9 has Fz= 1

2
similarly to the one with =2 and, hence, is again also a
bulk-hole eigenstate with vanishing polarization across the
entire wire cross section.

The fourth-highest level �=4� is predominantly LH-like
throughout the core of the wire. The hole spin polarization
drops to zero with increasing r only to recover and switch to
a HH character, P=1.8, at the edge of the wire. A similar
behavior is observed for the subband edge with =8. The
other subband edges show equally large variations in the
hole spin polarization as a function of the radial coordinate r.
This has been found to be a general feature for all subband-
edge levels characterized by Fz�

1
2 and is a clear manifesta-

tion of the strong valence-band mixing.

B. Dependence on shape and strength of the wire confinement

To investigate the universality of our findings, we have
performed similar analysis for hole nanowires with confining
potentials of different shape �or symmetry� and strength. In
particular, we considered two additional cases, namely, hard-
wall confined hole wires with square cross section and cylin-
drical hole nanowires confined by a harmonic potential. We
continue using the spherical approximation for the moment,
deferring a discussion about cubic crystal-symmetry effects
to later parts of the paper.

The subband edges of wires defined by the two additional
types of confinement are analyzed in the same way as we did
previously for the cylindrical hard-wall confined ones. In
particular, we are again focusing on the hole spin-
polarization density profiles to reveal the nature of HH-LH
mixing. In Fig. 6, we show the calculated hole spin-
polarization density profiles, P, for square cross section hard-
wall �upper row� and cylindrical soft-wall hole nanowires
�bottom row�. For brevity, we only focus on the subband
edges with =1, 2, 3, 6, and 8 to illustrate our main findings.

The topmost subband with =1 is seen to be of LH char-
acter, i.e., having P=0.2, throughout most of the wire cross
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component of the subband-edge wave function. �c� Total wave
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section. Especially the cylindrical wire with harmonic con-
fining potential shows a hole spin-polarization density profile
that is very similar to the corresponding hard-wall cylindrical
wire. This is not surprising, as both confining potentials are
axially symmetric. For the square-cross-section wire, on the
other hand, the lower symmetry of the confining potential is
reflected in the polarization density profile. Nevertheless, the
predominant character of the subband edge is still LH-like,
showing that this feature is indeed very robust.27,55

The second-highest subband edge �with =2� shows quite
a different hole spin-polarization profile when comparing the
different confining potentials. The square-cross-section nano-
wire shows a vanishing polarization at the center of the wire,
similar to the cylindrical hard-wall wire. However, due the
reduced symmetry, the polarization is finite at the corners of
the wire, where the hole spin polarization is of LH character.
For the soft-wall cylindrical wire, the second subband dis-
plays a predominantly HH character throughout most of the
nanowire cross section. However, examining the third-
highest subband edges with =3, we see that the square-
cross-section hard-wall wire state exhibits a HH character
�similar to the cylindrical hard-wall case�, whereas the cylin-
drical soft-wall nanowire has zero polarization. Thus, a level
switching in energy between the subband edges with =2
and =3 has occurred for the soft-wall cylindrical nanowire
in comparison with its hard-wall cylindrical and square-
cross-section counterparts.

For subband edges with higher , the deviations from
axial symmetry for the square-cross-section wire become in-
creasingly more prominent, as is shown explicitly for the
subband edges with =6 and =8. The soft-wall cylindrical
wire on the other hand displays hole spin-polarization pro-
files similar to the hard-wall cylindrical case.

Quite generally, our extensive studies of the hole spin
polarization of subband edges in nanowires show that
HH-LH mixing strongly affects the polarization of individual
subbands, a characteristic that is universal and independent
of the symmetry and shape of the confining potential. In
addition, we find that the topmost subband-edge states with
small  have HH-LH characters that are robust against
changes in the confining potentials.

IV. SPIN SPLITTING OF HOLE-WIRE SUBBAND EDGES

A. Luttinger model for bulk holes subject to a magnetic
field

We will now focus on the spin splitting of hole-nanowire
states in the presence of a magnetic field applied parallel to
the wire axis. The external field couples to both the spin-3

2
and orbital degrees of freedom. The Zeeman Hamiltonian
describing the interaction between the magnetic field, Bz, and
the spin degree of freedom is given by

HZ = − 2��BBzĴz, �15�

where �B is the Bohr magneton and � is the bulk-hole g
factor.39 We will neglect the anisotropic Zeeman contribution
that is of higher order in J because, in typical semiconduc-
tors and for the crystallographic wire direction we consider,
it is much smaller than the one given in Eq. �15�.

In order to include the orbital effects due to a magnetic

field applied in the z direction, we replace k̂→ k̂+ e
�A. The

symmetric gauge A= �− y
2 , x

2 ,0�Bz will be used, and we will
only consider resulting terms linear in Bz because we extract
g factors from the small-magnetic-field limit. In the spherical
approximation, i.e., using the Luttinger Hamiltonian of Eq.
�2�, the orbital terms arising from the replacement of canoni-
cal wave vector with the kinetic one have the following form

�we use atomic units and the definitions L̂z=xk̂y −yk̂x and
x̂�=x� iy�:

Horb
s = Horb,diag

s + Horb,mix
s

= − ��1 · 14�4 + �s�Ĵz
2 −

5

4
· 14�4	
L̂z�BBz

− i�s�x̂−k̂−Ĵ+
2 − x̂+k̂+Ĵ−

2��BBz. �16�

The first term is proportional to the orbital angular-

momentum operator L̂z and is diagonal in spin space. We
denote this contribution by Horb,diag

s . The remaining terms are
off diagonal in spin space, coupling states with Jz eigenvalue
differing by 2. We denote this contribution by Horb,mix

s . These
two contributions will be analyzed in greater detail in our
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discussion of the orbital contribution to the total g factor of
hole-nanowire subband edges.

At zero magnetic field, subbands with a given  and �Fz
are doubly degenerate. A finite Bz lifts this degeneracy, giv-
ing rise to a spin splitting from which we extract a g factor
according to

gtot
 = lim

Bz→0
sgn��F̂z�

+�
E

+�Bz� − E
−�Bz�

�BBz
. �17�

The sign factor introduces the physical definition of assign-

ing sign according to the projection of �F̂� along the mag-
netic field direction. It removes any ambiguity relating to the
particular choice of symmetry, �, labeling the 2�2 blocks of
the Hamiltonian. Due to the finite energy separation between
wire subbands, this definition is equivalent to the perturba-
tive �in Bz� result

gtot
 = sgn��F̂z�

+�
�HZ + Horb

s �
+ − �HZ + Horb

s �
−

�BBz

� sgn��F̂z�
+�

2�HZ + Horb
s �

+

�BBz
, �18�

where the expectation values are taken with respect to the
Bz=0 wire subband-edge eigenstates with �=+.

In the following, we analyze the individual bulk-material
and orbital contributions to the total g factor gtot

 =gZ


+gorb,diag
 +gorb,mix

 that arise from the linear-in-Bz terms HZ,
Horb,diag

s , and Horb,mix
s , respectively. It is useful to understand

each contribution’s separate properties, as their relative im-
portance may vary depending on physical details. For ex-
ample, the bulk-material contribution gZ

 will dominate in
diluted-magnetic semiconductor wires where � can be en-
hanced by several orders of magnitude due to the p-d ex-
change interaction between hole carriers and magnetic dop-
ant ions.61,77

B. Bulk-material contribution to g factors

We begin by analyzing the contribution to gtot
 that is due

to the Hamiltonian HZ. It follows from Eqs. �18� and �15�
that the g factor derived from the bulk-hole Zeeman effect
has the form

gZ
 = − 4� sgn��F̂z�

+��Ĵz�
+ = − 2�5� sgn��F̂z�

+��10.

�19�

In the right-hand side �rhs� equality, we have expressed gZ
 in

terms of �10, which is a dipole-related component of the
spin-3

2 density matrix �defined in Table III of Ref. 64�.
It is clear from Eq. �19� that an eigenstate of pure HH

character has an effective g factor of −6�, while a pure LH
state has a spin splitting characterized by g=−2�. This is
certainly the case for bulk-hole states at the valence-band
edges.39 The situation is different for quantum-confined hole
states, e.g., in a wire.52,56 As discussed in Sec. III, strong
HH-LH mixing is a universal characteristic of hole-nanowire
subband edges, and hole-nanowire states of purely HH or LH
character are not expected to be found. In particular, the

analysis of the squared amplitude of the spin-3
2 dipole mo-

ment in Sec. III showed that the normalized hole spin-
polarization profiles, P=�1

2 /�0
2, display strong spatial varia-

tions as a manifestation of HH-LH mixing. ��1 is directly
related to �10; see Ref. 64 for details.� The question is thus:
To what extent does the HH-LH mixing change the g factors
for hole states in a wire as compared with the bulk-material
�HH and LH� values of −6� and −2�?

Figure 7 shows the effective g factors normalized by � of
the ten highest subband edges in cylindrical nanowires with
hard-wall confinement. The values display strong variations
as a function of subband index . Furthermore, most sub-
bands have values that are strongly suppressed in compari-
son to the values expected for pure HH and LH states. In-
spection of the hole spin-density profiles discussed in Sec. III
and comparison with the g-factor values show a strong cor-
relation, establishing a direct connection between HH-LH
mixing and the observed large g-factor variations as a func-
tion of subband index. For example, the topmost subband
edge �=1� was found to be predominantly of LH character
�see Fig. 2�. Correspondingly, its g factor is found to be close
to −2�, just as expected from Eq. �19� for a pure LH state.

The second �and ninth� subband edges from the top have
vanishing polarizations, which correlate with a vanishing g
factor. Both the second and the ninth states belong to the
class of subband edges with Fz= 1

2 and are thus also a bulk-
hole eigenstate. As discussed in Fig. 2 of Ref. 56, the spin
splitting of bulk-hole bands is characterized at high values of
k� by values of g=0 or �g�=4�. The subbands with =2 and
=9 are examples of the former type. We have also found
wire subband edges of the other type whose spin splitting is
characterized by �g�=4�, e.g., the one with =16.

The dipole moment turns out to be just one of the three
nontrivial multipole moments that characterize a spin-3

2
state.64 This is a fundamental difference with a spin-1

2 system
where the dipole moment suffices to uniquely determine the
spin state. When the spin-3

2 polarization �i.e., the dipole mo-
ment� vanishes for pure spin states in two-dimensional64 and
one-dimensional56 hole systems, a substantial octupole mo-
ment can exist. For hole-nanowire subband edges, a math-
ematical relation56 illustrates this point,

FIG. 7. �Color online� Bulk-material contribution to the g factor
of the highest-in-energy subband-edge states, with =1–10, of a
hole nanowire defined by a cylindrical hard-wall confinement. The
arrows indicate the values of gZ /�=−2 and −6 corresponding to the
bulk-hole g factors of pure LH and HH states, respectively.
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�0
2 = 2�2

2 = �1
2 + �3

2. �20�

Equation �20� links the scalar invariants �i
2 obtained from the

multipolelike expansion of the spin-3
2 density matrix.64 The

squared monopole, �0
2, and dipole, �1

2, correspond �apart from
prefactors� to the squared magnitude of the hole charge den-
sity and hole spin-polarization density, respectively. The
quadrupole and octupole are unique to spin-3

2 systems. The
quadrupole is a measure of the HH-LH mixing, while the
octupole does not have a straightforward physical interpreta-
tion. The left equality in Eq. �20� quantifies the HH-LH mix-
ing that is present at subband edges. The right-hand equality
implies that the hole spin polarization, measured by the di-
pole moment �1, and the octupole �3 are complementary.
Thus, for the subband edges for which the hole spin polar-
ization vanishes, a maximum octupole moment is induced.
Similar comparisons can be made for all the wire eigenstates.
In general, states with mainly HH �LH� character will have g
factors close to −6� �g=−2��. States with mixed character,
displaying fluctuations in the hole spin-polarization profiles,
have widely varying values for g.

In Table I the calculated values of the g factors �with �
=1.2, the value39 corresponding to GaAs� for hole wires with
square-cross-section hard-wall confinement �middle row�
and cylindrical harmonic potential �bottom row� are shown
along with the numerical values for the g factors correspond-
ing to Fig. 7 for the cylindrical hard-wall nanowire �top
row�. In general, we observe strong similarities between the
g factors of the different structures, with respect to both mag-
nitude and sign. This is especially clear at low energies,
where the axial symmetry seems to be retained even in the
wire with square cross section. These findings do not come
as a surprise when one considers the similarity of hole spin-
polarization density profiles for the low-lying subband edges
�shown in Fig. 6�. As could be expected, the similarity is
stronger for the two types of cylindrical confinement, while
the square-cross-section wire states display some complex
hole spin-polarization variations �e.g., for subband edges
with =6 and 8�, with corresponding discrepancies between
the calculated g factor values of the square-cross-section
wire and the corresponding cylindrical ones. Note also that
the subband edges with vanishing polarization in the cylin-
drical wires acquire a finite, albeit small, polarization for the
square-cross-section one, with a corresponding nonzero
value of the hole g factor. Another interesting observation is
the level switching that occurs between subband edges with
=2 and 3 for the cylindrical wire with parabolic confining
potential. This is an example for the sensitivity of physical

quantities �here the wire-bound-state energy� with respect to
quantum-confinement-induced HH-LH mixing.

We conclude that, as a universal characteristic of hole
nanowires, states are of mixed HH and LH characters even at
the subband edges. This is manifested by large variations in
the bulk-material contribution to g factors as a function of
subband index, concomitant with an overall suppressed mag-
nitude of Zeeman splitting as compared with free holes.

C. Orbital effects

We now turn our attention to how the coupling between
the holes’ orbital degrees of freedom and the magnetic field
affects the splitting of hole-nanowire subband edges in a
magnetic field applied parallel to the wire axis. Using a simi-
lar perturbation approach as in Sec. IV B, the orbital contri-
bution to the total g factor for a subband edge with index 
can be written as

gorb
 = gorb,diag

 + gorb,mix
 , �21�

where

gorb,diag
 =

− 2��1�L̂z14�4�
+ + �s��Ĵz

2 −
5

4
14�4	L̂z�



+

sgn��F̂z�

+�
,

�22�

gorb,mix
 =

− 2�s

sgn��F̂z�
+�

�ix̂−k̂−Ĵ+
2 − ix̂+k̂+Ĵ−

2�
+ . �23�

The total orbital g-factor contribution gorb
 is shown in

Table II �top row� for the ten highest-in-energy subband
edges �=1–10� of a cylindrical hard-wall wire. The orbital
g factor displays large variations as a function of subband
index . Moreover, for some subband indices, e.g., =6 and
10, the values are significantly larger than the corresponding
bulk-material contributions discussed in Sec. IV B. In gen-
eral, we observe that the orbital contribution to the total g
factor of hole subband edges in cylindrical nanowires domi-
nates over the corresponding bulk-material contributions.

Examining the individual contributions gorb,diag
 and

gorb,mix
 , we see that, first of all, the two contributions have

similar magnitudes. In addition, the two contributions have
in general opposite sign, with the exception of that for the
subband edge with =6. The overall sign of the orbital gorb



is thus determined by the competition between these two
terms.

TABLE I. Bulk-material contribution to g factors for hole-nanowire subband edges with index 
=1–10 for three different types of wire confinement: �i� hard-wall cylindrical cross section, �ii� hard-wall
square cross section, and �iii� soft-wall cylindrical cross section.

 1 2 3 4 5 6 7 8 9 10

�i� gZ
 −2.26 0.00 −2.66 −1.70 0.19 −4.13 −0.65 −1.20 0.00 −0.28

�ii� gZ
 −2.22 0.07 −3.39 −1.55 0.06 −2.58 −0.72 −0.59 0.08 −0.17

�iii� gZ
 −1.84 −5.57 0.00 −1.34 −0.66 −1.60 −2.68 −0.97 0.01 −0.94
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The origin of large fluctuations in the total orbital contri-
bution to the g factor can be understood by examining the
interplay between the diagonal and mixing terms in greater
detail for cylindrical hard-wall hole wires. The operators en-
tering Eqs. �22� and �23� can be expressed in polar coordi-
nates as

L̂z = − i��,

x̂−k̂− = − iL̂−
2�r � r + L̂z� ,

x̂+k̂+ = �x̂−k̂−�†,

L̂− = e−i�. �24�

Using the wire eigenstates shown in Eq. �9� it follows that, in
the limit Bz→0, the contribution of Horb,diag

s to the orbital g
factor is given by

gorb,diag
 = − 2 sgn��F̂z�

+���Fz −
3

2
	��1 + �s�� 3

2
�
3

2
�



+

+ �Fz +
1

2
	��1 − �s��−

1

2
�−

1

2
�



+
 , �25�

where the angular brackets � 3
2 � 3

2 � and �− 1
2 �− 1

2 � are squared
amplitudes of the HH and LH components of an eigenstate
	+Fz

�,ch� as described in Eq. �9�. Equation �25� is linear in Fz,
reflecting the angular momentum that is acquired by the en-
velope wave function of the hole subband edge due to the
cylindrically symmetric quantum confinement. We also note
that the two terms in Eq. �25� differ by a factor of �1��s.
This is a manifestation of HH-LH splitting.

In Fig. 8�a�, we show values of gorb,diag
 for subband edges

with different Fz. For each value of Fz, the four g-factor
values correspond to the four highest-in-energy subband
edges with that particular Fz. We label this sequence in en-
ergy by the index �, not to be confused with the general
subband index . A linear dependence in Fz can be clearly
seen from the figure, confirming the presence of the large
quantum-confinement-induced envelope angular momentum.
We also observe a spread in the g-factor values for a fixed
value of Fz corresponding to different energies �and subband
index �. This is a clear manifestation of HH-LH mixing,
which enters through the squared amplitudes of the HH and
LH components in Eq. �25�. Thus, even though the Hamil-
tonian giving rise to the splitting characterized by gorb,diag

 is
diagonal in spin space, its contribution to the spin splitting is
affected by the quantum-confinement-induced HH-LH mix-

ing in the unperturbed states. The fluctuations in gorb,diag
 as a

function of subband index  are therefore due to the different
subbands having different total angular momenta Fz, as well
as different HH-LH characters.

In contrast to Horb,diag
s , the Hamiltonian Horb,mix

s couples
hole subband-edge wave function components with different
Jz. Thus, it gives rise to HH-LH mixing that is in addition to
the HH-LH mixing inherent to the unperturbed wire eigen-
states discussed in Sec. III. For a cylindrical hard-wall hole
wire, this generates a contribution to the spin splitting given
by

gorb,mix
 =

− 4�3

sgn��F̂z�
+�
� 3

2
�L̂−

2�r�r + L̂z��−
1

2
�



+

. �26�

Here the notation indicates that the expectation value is be-
tween HH and LH components of the subband-edge state
with  and +Fz, with spin projections Jz=3 /2 and Jz=−1 /2,
respectively.

In Fig. 8�b�, we show the g-factor contributions gorb,mix


for subband edges with − 7
2 �Fz�

11
2 . Again, for each value

of Fz we show the calculated g-factor values for the four
highest-in-energy subband edges with the given Fz. While
the characteristics of the mixing term are more complicated,
we can discern some general trends. For instance, for the
lowest-in-energy subband edges, with �=1, a clear linear
dependence on Fz is seen in the g factors. However, these g
factors increase monotonically with �Fz�, in contrast to the
splitting term, gorb,diag

 , which is monotonically decreasing
with �Fz�. In general, the terms gorb,diag

 and gorb,mix
 have simi-

lar magnitudes but opposite sign. However, for higher ener-
gies, this general rule does not apply and a large spread
between the g factors for a given Fz at different energies can
be observed.

TABLE II. Total orbital g factors, gorb
 , and the individual contributions gorb,diag

 and gorb,mix
 for the ten

highest subband edges with =1–10 in cylindrical hard-wall hole nanowires.

 ,�Fz 1,− 1
2 2 , 1

2 3 , 3
2 4 ,− 3

2 5 ,− 1
2 6 , 3

2 7 , 5
2 8 ,− 5

2 9 , 1
2 10,− 3

2

gorb
 2.78 −1.82 4.91 −0.05 −8.62 −14.10 −4.46 −3.28 −1.82 −18.09

gorb,diag
 −0.54 −1.82 −8.27 −12.40 −10.33 −5.66 −24.10 −25.04 −1.82 −19.63

gorb,mix
 3.32 0.00 13.18 12.35 1.71 −8.44 19.64 21.76 0.00 1.54

(b)(a)

FIG. 8. �Color online� Values for individual orbital g factor con-
tributions �a� gorb,diag

 and �b� gorb,mix
 for subband edges with − 7

2
�Fz�

11
2 �for the �=+ states� in a cylindrical hard-wall hole nano-

wire. The index � labels subband edges with a given Fz in order of
decreasing energy.
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A comparison between the orbital contribution to g fac-
tors gorb

 calculated for our three model hole-nanowire struc-
tures is shown in Table III. Interestingly, with the exceptions
of the levels with =2 and 3, all nanowires have very similar
orbital g factors for low-index levels �small �. This is true
both for the magnitude and the overall sign of gorb

 . In par-
ticular, the square-cross-section wire displays similar values
to the cylindrical ones, despite the lower symmetry of the
confining potential. Closer inspection of the levels with 
=2 and 3 also shows that, in fact, the similarities extend to
these levels as well if one interchanges the values for =2
and 3 for the cylindrical wire with harmonic confinement.
This is in agreement with our previous discussion on the
level switching observed in the hole spin polarization of
these levels for this wire confinement potential �see Sec. III�.
The spread between gorb

 factors with given  corresponding
to different confining potentials increases, however, with in-
creasing subband index , in accordance with the expecta-
tion that the more strongly delocalized wave functions probe
the outer edges of the confining potential.

D. Cubic corrections

Next we consider the influence of corrections due to cubic
crystal symmetry. These corrections depend on the orienta-
tion of the wire with respect to crystallographic axes. In the
following, we assume that the wire and, hence, the spin-3

2
quantization axis are parallel to the �001� direction. Starting
from the full Luttinger Hamiltonian HL shown in Eq. �1�, we

perform the transformation k̂→ k̂+ e
�A in the symmetric

gauge. This yields the following terms linear in Bz:

Horb = − ���1 · 14�4 + �2�Ĵz
2 −

5

4
· 14�4	
L̂z + �2�yk̂x + xk̂y�

��Ĵ+
2 + Ĵ−

2� + i�3�xk̂x − yk̂y��Ĵ+
2 − Ĵ−

2���BBz. �27�

In contrast to Eq. �16�, the orbital Hamiltonian of Eq. �27�
contains terms proportional to �2 and �3. The fact that �2
��3 accounts for band-warping effects.

In Fig. 9, we show the calculated values for gtot
 for the

hole-wire subband edges with =1–10 of a square cross-
section hard-wall nanowire. The open symbols are values
obtained from the numerical diagonalization of HL

s +HZ
+Horb

s +Vrh�x ,y�, i.e., using the spherical approximation for
the Luttinger Hamiltonian. The filled symbols are obtained
by diagonalizing HL+HZ+Horb+Vrh�x ,y�, which includes
band warping due to the cubic crystal symmetry. For sub-
band edges with low values of , the g factors obtained from

the two approaches turn out to be very similar. For higher
values of , on the other hand, we observe an increasing
spread between the g-factor values corresponding to the two
cases. Properties of wires aligned parallel to crystallographic
directions with lower symmetry than �001� can be expected
to be more strongly affected by band-warping corrections.40

E. Interplay of bulk-material and orbital wire-bound-state
contributions to g factors: Tunability of sign and

magnitude

We now discuss in greater detail the interplay between the
various contributions to the total nanowire-hole g factor. Let
us recall that gtot

 is the sum of three terms, gtot
 =gZ



+gorb,diag
 +gorb,mix

 , which are the bulk-material, diagonal-in-
spin-space orbital, and HH-LH mixed orbital contributions,
respectively. In Table IV, we show the calculated gtot

 and its
components for the ten highest subband edges in hole nano-
wires with square-cross-section hard-wall quantum confine-
ment. The values are obtained by numerical diagonalization
of HL+Horb+HZ+Vrh�x ,y�, i.e., using the Luttinger Hamil-
tonian with cubic �not spherical� symmetry.

Table IV illustrates several of our main conclusions. The
bulk-material contribution shows strong variations in sign
and magnitude as a function of subband index. This is a
manifestation of HH-LH mixing at hole-nanowire subband
edges. Similar fluctuations occur for the orbital contribu-
tions. This is in part due to the fact that the envelope function

TABLE III. Total orbital g factors, gorb
 , for the ten highest subband edges �=1–10� in �i� cylindrical

hard-wall, �ii� square hard-wall, and �iii� cylindrical soft-wall hole nanowires.

 1 2 3 4 5 6 7 8 9 10

�i� gorb
 2.78 −1.82 4.91 −0.05 −8.62 −14.10 −4.46 −3.28 −1.82 −18.09

�ii� gorb
 2.74 −2.21 5.88 −0.69 −6.26 −12.12 −2.39 −1.66 −1.91 −9.26

�iii� gorb
 3.39 5.88 −1.82 −1.13 −3.38 −9.55 −1.81 −4.67 −1.66 −6.85

FIG. 9. �Color online� Hole g factors gtot
 for the top ten subband

edges �=1–10� of a square-cross-section hard-wall nanowire.
Circles correspond to values obtained from diagonalizing HL

s

+Horb
s +HZ+Vrh�x ,y�, i.e., using the spherical approximation for the

Luttinger Hamiltonian �Ref. 71�. Squares denote the values ob-
tained from numerically diagonalizing HL+Horb+HZ+Vrh�x ,y�, i.e.,
using the Luttinger Hamiltonian reflecting the cubic crystal
symmetry.
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of subbands with different  acquires different quantum-
confinement-induced orbital bound-state angular momenta.
In addition, the fluctuations also originate from HH-LH mix-
ing. The two orbital contributions gorb,diag

 and gorb,mix
 have,

in general, comparable magnitudes but opposite signs.
Most importantly, the total g factor gtot

 depends sensi-
tively on the relative sign and magnitude of the three contri-
butions. As both the orbital contribution to the spin splitting
and the detailed form of the HH-LH mixing depend on the
details of the quantum confinement,57 we expect that the in-
terplay between the bulk-material and orbital g-factor terms
can be tuned by confinement engineering. This would enable
the use of nanowires to realize devices for nanospintronics.
In Fig. 10 we demonstrate such tunability of hole g factors in
nanowires. The thick curves show gtot

 for the three highest-
in-energy subband edges of rectangular-cross-section hard-
wall confined wires plotted as a function of the aspect ratio
A=Wx /Wy. The bulk-material and orbital contributions are

also shown �by the thin solid and dashed lines, respectively�.
A general characteristic that is observed for all three subband
edges is that the total g factor approaches zero in the limit of
large aspect ratio A. This is due to the fact that, with increas-
ing A, our nanowire system approaches the 2D limit, essen-
tially mimicking a quantum well subject to an in-plane mag-
netic field. For such a system, the topmost hole quantum-
well subband edge is known to have a small �within the
spherical approximation: vanishing� g factor,39,40 in agree-
ment with our findings. The sudden sign change observed in
g2 and g3 occurs at anticrossing points in the energy spec-

trum where �F̂z� goes through zero and consequently re-
verses sign.

The observed dependence of the subband-edge g factor
values on the aspect ratio of the confining potential is quite
intriguing. All subband edges display a strong tunability of
the magnitude of the g factor with a change in the aspect
ratio. For the third subband, a variation in A between 1 and 2
gives rise to a change in the sign of the g factor that is not
associated with an anticrossing, thus demonstrating the abil-
ity to gradually tune the spin splitting to zero. The possibility
to manipulate both the magnitude and sign of g factors is a
useful ingredient for spintronic applications. We therefore
propose that hole nanowires may be versatile building blocks
for nanospintronics due to the demonstrated tunability that
arises from the interplay between bulk-material and orbital
spin splittings in an applied magnetic field. Confinement en-
gineering of nanowires and quantum point contacts can be
readily achieved with present-day technologies, e.g., using
side gates on lithographically defined quantum wires67 and
quantum point contacts41,42 or wrap-gated self-assembled
nanowires.65,66

F. Hole-nanowire dispersions for finite kz

We finish our analysis by discussing the energy dispersion
of hole-nanowire states due to motion along the wire direc-
tion. For finite kz, the decomposition shown in Eq. �3� is no
longer possible. Instead, the full 4�4 Luttinger Hamiltonian
must be considered. We diagonalized numerically the Hamil-
tonian consisting of the sum of HL shown in Eq. �1� and
Vrh�x ,y� for a square-cross-section hard-wall GaAs nanowire
oriented along the �001� direction.

TABLE IV. Total g factor gtot
 =gZ

+gorb,diag
 +gorb,mix

 for the ten highest-in-energy subband edges �
=1–10� of a square-cross-section hole nanowire with hard-wall confinement. gZ

 is the bulk-material contri-
bution, which arises from the Zeeman effect of holes in the semiconductor material. The additional spin
splitting due to coupling of the applied magnetic field to the orbital wire bound state is embodied in gorb,diag



and gorb,mix
 , which are derived from the first and second terms in Eq. �27�, respectively. Values shown are

obtained by numerically diagonalizing the cubic Hamiltonian HL+Horb+HZ+Vrh�x ,y� and considering the
spin splitting for Bz→0.

 1 2 3 4 5 6 7 8 9 10

gtot
 0.50 −2.55 0.67 −2.69 −7.71 −17.64 −2.56 −6.97 −2.61 −9.45

gZ
 −2.13 −0.23 −4.83 −1.33 0.55 −1.74 −1.20 −0.56 −0.13 −0.73

gorb,diag
 −0.58 −2.35 −3.08 −12.80 −10.87 −11.09 −18.89 −25.99 −7.16 −31.20

gorb,mix
 3.20 0.03 8.58 11.45 2.61 −4.81 17.52 19.58 4.68 22.47

(b)(a)

(c)

FIG. 10. �Color online� Dependence of subband-edge g factors
gtot

 on the aspect ratio A for a rectangular-cross-section hard-wall-
confined nanowire �thick solid curves�. We show results for the top
three hole-wire subband edges: �a� =1, �b� =2, and �c� =3. The
thin solid and dashed curves are plots of the corresponding bulk-
material and orbital contributions, gZ

 and gorb
 , respectively.

CSONTOS et al. PHYSICAL REVIEW B 79, 155323 �2009�

155323-12



The highest hole-nanowire subband dispersions are shown
in Fig. 11. Several observations can be made. First, the hole
dispersions are strongly nonparabolic, which is a distinct
manifestation of the SO coupling and HH-LH mixing in the
valence band of typical semiconductors. Second, some sub-
bands display electronlike dispersions as well as off-center
�kz�0� maxima. For example, the highlighted points A, B,
and D correspond to off-center maxima for the subbands
with =3, 4, and 8, respectively. The occurrence of subband
edges away from the zone center, as well as the strong non-
parabolic dispersions, will have direct implications for the
transport and optical properties of hole nanowires.

One example is the quantized conductance of one-
dimensional systems. It is well known that transport mea-
surements in the linear-response regime of one-dimensional
quantum wires and quantum point contacts yield quantized
conductance steps67,78,79 if the transport is ballistic. Such
conductance steps occur whenever a one-dimensional sub-
band is opened as a channel for conduction, as it falls below
the electrochemical potential determined by the contacts.
Typically, top or side gates are employed to adjust the wire
width and, thus, the quasi-1D subband energies. In the ab-
sence of a magnetic field, the conductance steps occur in
units of 2e2 /h.

In Fig. 11�b�, we show a schematics of the linear-response
conductance of a hole nanowire with the dispersion shown in

Fig. 11�a�. The abscissa refers to a gate voltage applied to a
top or side gate close to the nanowire or quantum point-
contact device. Application of a gate voltage essentially
tunes the Fermi level �top gate� or the effective lateral con-
finement �side gate� of the nanowire or quantum point-
contact device such that different parts of the energy spec-
trum fall within the small energy window around the Fermi
level in which conduction is possible. In conventional78,79

zero-field quantized conductance spectra, the conductance
changes monotonically in steps of 2e2 /h as a function of gate
voltage. This corresponds to the case of subband edges at
kz=0 entering the energy window which is allowed for trans-
port around the Fermi level. A hole nanowire can display
quite a different conductance spectrum due to its strong non-
parabolic dispersion. For a hole nanowire with the dispersion
show in Fig. 11�a�, the conductance can both increase and
decrease in steps of 2e2 /h and also 2�2e2 /h�. This behavior
is caused by off-center subband maxima, examples of which
are seen at points A and B in the hole dispersion shown in
Fig. 11�a�, as well as switches between holelike and electron-
like dispersions, as is the case for point F. A measurement of
the transport properties in the linear-response regime can
thus yield insight to the detailed structure of the hole-
nanowire subband dispersions.

In the presence of a magnetic field, the degeneracy of the
hole-nanowire subbands is lifted. Similar to the so far dis-
cussed spin splitting of the subband edges at kz=0, the spin
splitting of the off-center maxima can also be probed by
transport or optical measurements. For the square-cross-
section wire with dispersion shown in Fig. 11�a�, we have
three off-center maxima at points A, B, and D. Calculation of
the spin splitting at these three points for a small magnetic
field yields the g factor magnitudes gtot

A =2.25, gtot
B =2.89, and

gtot
D =4.20, respectively. The full dependence of the g factors

of states in the five highest hole-wire subbands as a function
of kz is shown in Fig. 12. Interestingly, the g factor shows a
strong dependence on kz, displaying an oscillatory variation
and vanishing intermittently for most subbands.

V. DISCUSSION AND CONCLUDING REMARKS

We have calculated Zeeman spitting of states in hole
nanowires, subjected to a magnetic field Bz pointing parallel
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FIG. 11. �a� Zero-field hole-nanowire subband dispersions for a
square-cross-section hard-wall nanowire. The energy has been nor-
malized by EW=�1�2 / �2m0Wx

2�. The hole-nanowire states were ob-
tained by numerical diagonalization of the cubic-symmetry Hamil-
tonian HL+Vrh�x ,y�. Dashed arrows indicate extremal values of
subband dispersions that would be associated with steps in the two-
terminal hole-wire conductance. �b� Schematic dependence on side-
gate voltage for the linear two-terminal conductance through a hole
nanowire or quantum point contact based on the hole subband dis-
persions shown in �a�. Each conductance step corresponds to the
Fermi energy reaching a value indicated by the dashed arrows.
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FIG. 12. �Color online� Absolute values of hole-wire g factors
gtot

 for states at finite wave vector kz for motion parallel to the wire
axis. Results are shown for the subbands with =1–5.
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to the wire axis �the z direction� and defined by three differ-
ent types of confinement �cylindrical hard wall, cylindrical
soft harmonic, and rectangular hard wall�. Our main focus
has been to elucidate the properties of zone-center subband-
edge states, although a few results are also given for hole-
wire states having finite wave vector kz for motion along the
wire. We have disentangled spin-splitting contributions aris-
ing from �a� the bulk-hole Zeeman effect in the semiconduc-
tor material and �b� the coupling of the applied magnetic
field to the orbital wire bound states. We termed the contri-
bution �a� the bulk-material contribution to the g factor and
indicated it by the symbol gZ

, where the index  labels the
quasi-1D hole-wire subbands. The orbital contribution �b�
turned out to have two separate terms. The one indicated by
gorb,diag

 reflects the direct coupling of hole orbital angular-

momentum component L̂z with the magnetic field and dis-
plays HH-LH splitting, and the second one, labeled gorb,mix

 ,
arises from HH-LH mixing.

Quantum confinement of holes in a wire renders their
eigenstates to be coherent superpositions of HH and LH
components. Although these are pure states in the quantum-
statistical sense, the spin polarization of such HH-LH mixed
states is not fixed to be 3/2 as a simple analogy with spin-1

2
systems would suggest. We have used the recently
discussed64 invariant-multipole decomposition of the spin-3

2
density matrix to universally characterize spin polarization of
hole-wire subband-edge states. Within limits, the properties
of low-index �highest-in-energy� hole subbands turned out to
be quite robust with respect to changes in wire cross-
sectional shape and confinement strength. Also, many quali-
tative features are already captured within models where
band warping due to cubic crystal symmetry is neglected.

HH-LH mixing is illustrated by radial profiles of the
spin-3

2 dipole moment �i.e., spin polarization� and turns out
to have a profound impact on spin splitting. Variations in the
spin-polarization profiles between different subband-edge
states are reflected in fluctuations of the individual g-factor
contributions, as well as the total nanowire-hole g factor. It is
possible, by addressing different hole subband edges, to
study nontrivial hole spin-polarization states that have no
counterpart in spin-1

2 systems, such as zero-polarizations
states that have a large spin-3

2 octupole component. The

bulk-material contribution to the hole-wire g factor could be
investigated separately in wires made from diluted-magnetic
semiconductor materials, where its magnitude can exceed
that of the orbital terms by a few orders of magnitude.

The spin-splitting properties of individual hole-wire sub-
band edges turn out to be tunable by changing the aspect
ratio in a rectangular-cross-section wire geometry. This is of
interest to applications involving electrostatically defined
quantum point contacts or gated self-assembled wires, where
the wire shape can be manipulated in situ.

Our calculations were performed using Luttinger param-
eters for GaAs. However, results obtained within the spheri-
cal approximation will apply to other materials having a
similar ratio �s /�1. The exact quantitative results will prob-
ably be different once cubic corrections are taken into ac-
count. However, as our comparison between fully cubic and
approximate spherical models has shown, qualitative trends
for low-index hole-wire subband edges are already captured
in the spherical model. Hence, we believe that our results can
be applied to materials other than GaAs.

The effects of linear-in-wave-vector spin-orbit couplings
have not been considered. The relative strength of bulk-
inversion-asymmetry �BIA� induced k-linear terms, as com-
pared with leading-order terms in the Luttinger Hamiltonian,
depends strongly on the material and the direction of motion
with respect to crystallographic axes.39 Given that cubic cor-
rections have not been too important for low-lying hole-wire
subband edges, we expect the same to hold for BIA terms.
Also, while previous studies have shown that, in principle,
electric fields applied perpendicular to nanowires affect hole
g factors80 �essentially because the HH-LH mixing changes�,
this effect becomes relevant only at quite large field magni-
tudes that are not likely to exist in typical point-contact or
nanowire samples.
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